

Exercise 20

1. Estimate the Bodenstein number in a fixed-bed reactor of length $L = 0.1 \text{ m}$ and internal diameter $d_t = 5 \text{ mm}$ filled with spherical particles of diameter $d_p = 0.3 \text{ mm}$ at a space-time of liquid reaction mixture of $\tau = 60 \text{ s}$. The bed void fraction is $\varepsilon = 0.4$. Transport properties: $D_m = 10^{-9} \text{ m}^2 \text{s}^{-1}$, $\nu = 10^{-6} \text{ m}^2 \text{s}^{-1}$. Can the residence time distribution in the reactor be qualified as plug-flow?
2. What would be the Bodenstein number if the reactor had not been filled with particles?

Solution

$$1. \quad Q = u S = \frac{V \varepsilon}{\tau} = \frac{L S \varepsilon}{\tau} \rightarrow u = \frac{L \varepsilon}{\tau} = 6.67 \cdot 10^{-4} \text{ m/s (empty-bed velocity)}$$

$$Re_p = \frac{u \cdot d_p}{\nu} = 0.18$$

$$Pe_{ax} = \frac{0.2 + 0.011 \cdot Re_p^{0.48}}{\varepsilon} = 0.51$$

$$Bo = Pe_{ax} \frac{L}{d_p} = 171 > 100 \rightarrow \text{plug flow}$$

$$2. \quad u = \frac{L}{\tau} = 1.67 \cdot 10^{-3} \text{ m/s}$$

$$Re = \frac{u \cdot d_t}{\nu} = 8 \rightarrow \text{stratified flow}$$

Taylor-Aris: $Bo \cong 192 \frac{D_m L}{d_t^2 u} = 0.5 \rightarrow \text{very far from plug flow!}$